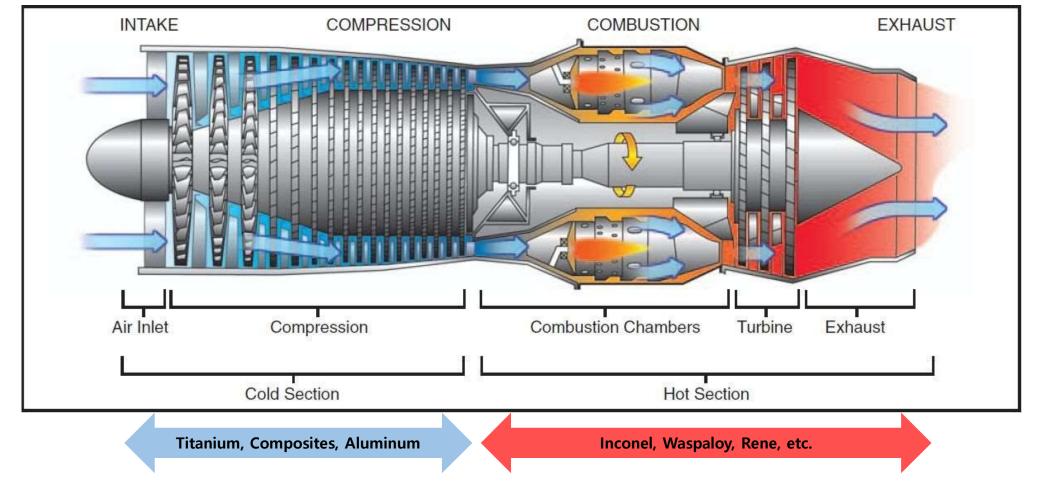


Indexable inserts

HRSA turning

June 2020


Contact information

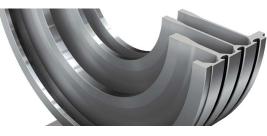
Jan Andersson Director, Product Management – Indexable Inserts for America & Asia YG-1 Tool (USA) Co 730 CORPORATE WOODS PARKWAY VERNON HILLS, IL 60061 Mobile: ±1-603-391-5413 e-mail: janandersson@yg1usa.com Web: www.yg1usa.com

Aerospace Engine

Copyright ⓒ 2020. YG-1 Co., LTD. All Rights Reserved. Copying, modifying, or reproducing in whole or in parts are prohibited without prior permission of the publisher.

Engine Components

Shaft


Disc

Blisk/IBR

Combustion casing

Spools

Impeller

Other markets

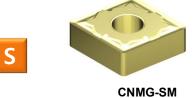
Gas Turbines

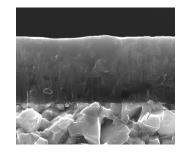
Medical

Steam Turbines

Oil

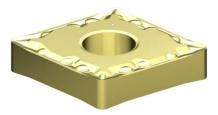
YG401 for HRSA materials

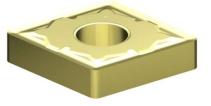

New Grade information


- 1) New PVD-Coating Technology
 - Highly heat-resistant TiAIN structure realizes excellent flank, crater and notch wear resistance.
 - Greatly improved film coating adhesion realizes excellent boundary defect resistance.
 - Top coating layer provide smooth surface and lubricant effect
 - ⇒ Extremely good adhesion for lower feed and lower D.O.C
- 2) Ultra fine-grained carbide and balanced substrate
- 3) Improved wear resistance and surface finish by applying post treatment of low friction

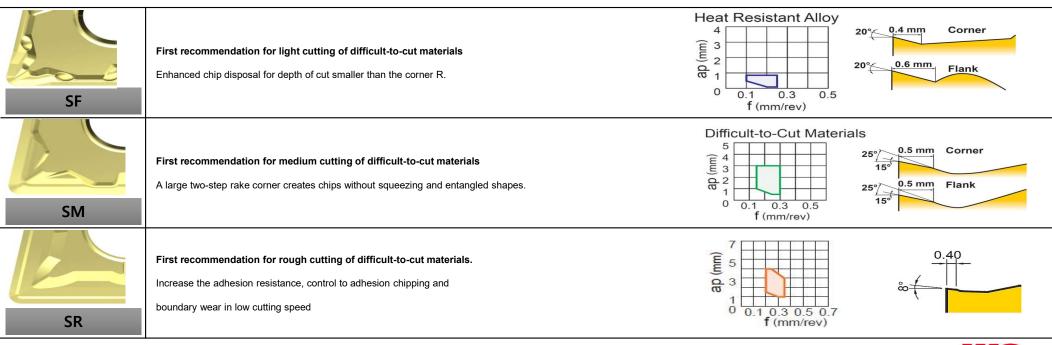
New Chip Breaker and Precision Ground (**GG Insert)

- 1) Periphery ground with sharpest edge line
- 2) Excellent chip control in a variety of D.O.C and feed rates





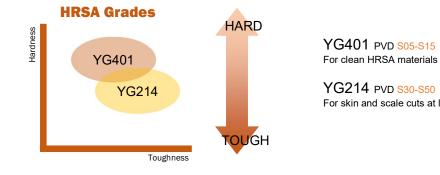
Chipbreakers for HRSA materials

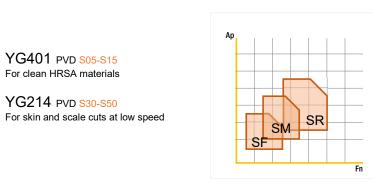

CNGG120408-SF/CNGG432-SF (For light cutting)

CNMG120408-SM/CNMG432-SM (For medium cutting)

CNMG120408-SR/CNMG432-SR (For roughing cutting)

Copyright © 2020. YG-1 Co., LTD. All Rights Reserved.


Copying, modifying, or reproducing in whole or in parts are prohibited without prior permission of the publisher.



- G-tolerance reduces the risk of scrap when indexing
 - $\circ\,$ Cost of scrap extremely high due to high raw material cost and many machining hours before last stage machining
- Aerospace engine manufacturer demands G-tolerance for last stage machining
- Medical manufacturers typically demands G-tolerance inserts for finish pass

Turning HRSA

Chipbreakers

Types of HRSA

- Nickel based Super Alloys
 - **718+**
 - **IN100**
 - ME16
 - RR1000
 - Inconel (625, 718)
 - Waspaloy
 - Rene (41, 88, 95, 103)
 - Udimet 720
 - GTD111
 - Haynes (242, 263)
 - Hasteloy (S, X)

- Cobalt based Super Alloys
 - Haynes (21, 25, 188, 556)
 - Stellite (6, 12, 20, 21, 25, F, 706, 712, Ultimet)
 - MAR-M (302, 509)
 - AiResist (213, 13)
- Iron based Super Alloys
 - A286
 - Greek Ascoloy
 - Incoloy (903, 907, 909)
 - AerMet 100 (technically Martensitic Stainless)

Types of HRSA and how they machine

- Ni based Superalloys
 - Aerospace engine components
 - Power Generation (Land based gas turbines)
 - Deep water Oil & Gas
 - Most common Inconel 718 (aged, 44-48HrC)
 - Dedicated PVD HRSA grades
 - Requires G tolerance or better for most finishing (aerospace)
 - Lamellar chipflow adding high stress on microgeometry requiring dedicated geometry
 - Highly susceptible to chemical wear (crater, notch), requires lead angles
 - Typical tool life 5-8 minutes
 - Low to Moderate speed
 - Inconel 718; 120-200SFM [35-60m]
 - o Waspaloy; 100-180SFM [30-55m]

Lamellar chip flov

Types of HRSA and how they machine

- Co based Superalloys
 - Aerospace engine components
 - Hot section (blades, vanes) of turbine and combustor parts
 - Medical implants (ex. CoCr)
 - Most expensive of the ISO-S materials
 - Highest hot hardness
 - Haynes 188 most common
 - Dedicated PVD HRSA grades
 - Requires G tolerance or better for most finishing (aerospace)
 - Lamellar chipflow adding high stress on microgeometry requiring dedicated geometry. Select strongest possible geometry
 - Highly susceptible to chemical wear (crater, notch), requires lead angles
 - Typical tool life 5-6 minutes
 - Low to Moderate speed
 - Haynes 188; 100-180SFM [30-55m]

Types of HRSA and how they machine

- Fe based Superalloys (aka Iron-Nickel)
 - Lowest elevated temperature strength of the ISO-S
 - Relatively inexpensive material
 - A286 most common
 - Typically PVD HRSA grades, but CVD stainless grades may be considered
 - Requires larger chip area due to continous chipflow
 - Highly susceptible to chemical wear (crater, notch), requires lead angles
 - Typical tool life 8-15 minutes
 - Low to Moderate speed

 A286; 180-300SFM [55-90m]

Success stories

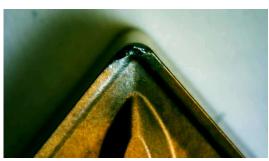
- Inconel 718 non-aged, 36-38HrC • Material:
 - CNMG120408-SM YG401/CNMG432-SM YG401
- Cutting data:

• Insert:

170SFM (52m), fn .008" (0.20mm), Ap .040" (1 mm)

5 minutes engagement

5 minutes engagement


5 minutes engagement


Success stories

- Material: Waspaloy, forging scale
- Insert:
- Cutting data:

CNMG120408-MR YG214/CNMG432-MR YG214 80SFM (24m), fn .008" (0.20mm), Ap .040" (1 mm)

5 minutes engagement

5 minutes engagement

www.yg1usa.com

All information provided in this material is the property of YG-1 Co., Ltd, and cannot be used, copied or provided to a third party without the prior permission of YG-1 Co., Ltd.

Copyright (c) 2020. YG-1 Co., LTD. All Rights Reserved. Copying, modifying, or reproducing in whole or in parts are prohibited without prior permission of the publisher.

